Comparison of Radioimmuno and Carbon Nanotube Field-Effect Transistor Assays for Measuring Insulin-Like Growth Factor-1 in a Preclinical Model of Human Breast Cancer
نویسندگان
چکیده
BACKGROUND To realize the promise of personalized medicine, diagnostic instruments used for detecting and measuring biomarkers must become smaller, faster and less expensive. Although most techniques used currently to detect biomarkers are sensitive and specific, many suffer from several disadvantages including their complexity, high cost and long turnaround time. One strategy to overcome these problems is to exploit carbon nanotube (CNT) based biosensors, which are sensitive, use inexpensive disposable components and can be easily adapted to current assay protocols. In this study we investigated the applicability of using a CNT field-effect transistor (CNT-FET) as a diagnostic instrument for measuring cancer biomarkers in serum using a mouse model of Breast Cancer Susceptibility 1-related breast cancer. Insulin like growth factor-1 (IGF-1) was chosen because it is highly relevant in breast cancer and because measuring serum IGF-1 levels by conventional methods is complicated due to specific IGF-1 serum binding proteins. FINDINGS Our results show that there is good correlation between the two platforms with respect to detecting serum IGF-1. In fact, the CNT-FETs required only one antibody, gave real-time results and required approximately 100-fold less mouse serum than the radioimmunoassay. CONCLUSIONS Both IGF-1 radioimmuno and CNT-FET assays gave comparable results. Indeed, the CNT-FET assay was simpler and faster than the radioimmunoassay. Additionally, the low serum sample required by CNT-FETs can be especially advantageous for studies constricted by limited amount of human clinical samples and for mouse studies, since animals often need to be sacrificed to obtain enough serum for biomarker evaluation.
منابع مشابه
Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملGate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)
In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...
متن کاملBallistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2
Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...
متن کاملSelf-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET)
We present the design and simulation of a single-walled carbon nanotube(SWCNT)-based field-effect transistor (FET) using Silvaco TCAD. In this paper, theself-heating effect modeling of the CNT MOSFET structure is performed and comparedwith conventional MOSFET structure having same channel length. The numericalresults are presented to show the self-heating effect on the I...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کامل